Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 5, 2026
-
Abstract We present ultraviolet, optical, and near-infrared photometric and optical spectroscopic observations of the luminous fast blue optical transient (LFBOT) CSS 161010:045834–081803 (CSS 161010). The transient was found in a low-redshift (z= 0.033) dwarf galaxy. The light curves of CSS 161010 are characterized by an extremely fast evolution and blue colors. TheV-band light curve shows that CSS 161010 reaches an absolute peak of mag in 3.8 days from the start of the outburst. After maximum, CSS 161010 follows a power-law decline ∝t−2.8±0.1in all optical bands. These photometric properties are comparable to those of well-observed LFBOTs such as AT 2018cow, AT 2020mrf, and AT 2020xnd. However, unlike these objects, the spectra of CSS 161010 show a remarkable transformation from a blue and featureless continuum to spectra dominated by very broad, entirely blueshifted hydrogen emission lines with velocities of up to 10% of the speed of light. The persistent blueshifted emission and the lack of any emission at the rest wavelength of CSS 161010 are unique features not seen in any transient before CSS 161010. The combined observational properties of CSS 161010 and itsM*∼ 108M⊙dwarf galaxy host favor the tidal disruption of a star by an intermediate-mass black hole as its origin.more » « less
-
Abstract We resolve the multiple images of the binary-lens microlensing event ASASSN-22av using the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The light curves show weak binary-lens perturbations, complicating the analysis, but the joint modeling with the VLTI data breaks several degeneracies, arriving at a strongly favored solution. Thanks to precise measurements of the angular Einstein radiusθE= 0.724 ± 0.002 mas and microlens parallax, we determine that the lens system consists of two M dwarfs with masses ofM1= 0.258 ± 0.008M⊙andM2= 0.130 ± 0.007M⊙, a projected separation ofr⊥= 6.83 ± 0.31 au, and a distance ofDL= 2.29 ± 0.08 kpc. The successful VLTI observations of ASASSN-22av open up a new path for studying intermediate-separation (i.e., a few astronomical units) stellar-mass binaries, including those containing dark compact objects such as neutron stars and stellar-mass black holes.more » « less
-
Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso≈ 1055erg) and proximity (z≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t−1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.more » « less
An official website of the United States government
